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Abstract— Mechanosensitive ion channels influence
the electrophysiological state of cardiac myocytes. An
examination of the mechanisms of mechano-electrical
coupling on cellular level by the mechanosensitive ion
channels was performed. Simulations with a detai-
led electrophysiological model were carried out. Sta-
tic stretch leaded to an increase of the resting po-
tential and a decrease of the duration of the action
potential with increasing sarcomere length. Dynamic
stretch delivered a variety of phenomena depending
on the duration and amplitude of the stretch. An ar-
rhythmogenic single cell phenomenon, early afterde-
polarisation, was observed.

I. INTRODUCTION

Mechanosensitive ion channels were observed in a
variety of cells, including bacteria, plant and animal
cells. The channels show changes in their probabi-
lity to be in the open state dependent on mechani-
cal quantities like strain and stress. The behavior of
the channels influences the cellular electrophysiolo-
gical state, e. g. the resting potential and the cour-
se of action potentials, as well as the initiation of
excitation [1][2]. Potential pathophysiological conse-
quences, i. e. arrhythmogenic effects, of the resulting
mechano-electrical coupling are subject of recent ex-
aminations [3][4][5][6][7].

This work is focussed on the examination of the
mechanisms of mechano-electrical coupling on cel-
lular level by the mechanosensitive ion channels.
Therefore, stretch currents in a detailed electrophy-
siological model of ventricular myocytes were para-
meterized. Simulations with the resulting model by
applying static and dynamic stretch were performed
and their results discussed.

II. MODELS OF STRETCH ACTIVATED CHANNELS

Different models were proposed to calculate me-
chanosensitive conductances and to reconstruct the
associated currents. The models differ concerning the
weighting of the ion conductances by functions of the
mechanical quantities like strain and stress effecting
the sarcolemma. Furthermore, the models differ in
their inclusion of ionic currents and the ion specifici-
ty of the channels.

This work is focused on stretch activated chan-
nels of cardiac myocytes. Hereby, weighting functions
can be derived from the strain using the change of
sarcomere length [8][9][10], and the cell volume Ve
[11][12]. A weighting function derived from the stress
is the isometric tension [10].

An exemplary weighting function s dependent on

), Germany

the sarcomere length SL is determined by:

1
1+ ae A(SL-5Lo)

s(SL) =

with the parameters « and 8, and SL¢ [8][10]. Simi-
lar weighting functions are used with the parameters
isometric tension and cell volume.

A model without differentation of ion types pro-
posed in [8][9] describes the stretch current I, by

Ist'r = S(SL) Gstr (Vm - Est'r)

with the maximal conductivities gs;,, the transmem-
brane voltage V,,, and the equilibrium voltages .

A second model [10] describes the summary stretch
current I, with a non-specific Ins s¢r and an anion
stretch current Ip str:

Ist'r = INs,st'r + IAn,str

The currents Ins s¢r and Iap s¢r are determined by
the stretch function s dependent on the sarcomere
length SL, the maximal conductivities gn; s¢» and
9An,str, Tesp., and the equilibrium voltages Ens str
and Eap str, 1€SP.:

S(SL) gNs,st'r (Vm - ENs,st'r)
S(SL) 9An,str (Vm - EAn,st'r)

INs,st'r =

IAn,str =

A third model [13] dissipates the summary stretch
current Iy, in a sodium current Iy, s¢r, a potassi-
um current Ix sr, a calcium current I¢g s¢r, and an
anion stretch current 14y, sr:

Ist'r = INa,st'r + IK,st'r + ICa,st'r + IAn,str

Hereby, the stretch currents are calculated as describ-
ed in the simple model with the stretch function s,
the maximal conductivities and the equilibrium vol-
tages:

Inastr = S(SL) gna,str (Vin — ENa)
Ixstr = 8(SL) gk str (Vm — Ek)
Icastr = S(SL) 9ca,str ( m = ECa)

IAn,str = (SL) 9An,str (V EAn,str)

The latter model describes the stretch current ob-
viously more detailed regarding the different types
of ions and herewith offers the advantage to update
quantitatively the sodium, potassium and calcium
concentrations. This model is used in the following
simulations.
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Fig. 1. Simulations with the Noble-Varghese-Kohl-Noble mo-
del. Transmembrane voltage V;, is dependent on the sti-
mulus frequency ranging from 0.5 to 4 Hz. For each fre-
quency a single action potential is visualized.

I1I. ELECTROPHYSIOLOGICAL MODEL AND
PARAMETERIZATION

The Noble-Varghese-Kohl-Noble model forms the
framework for the simulations of the cellular elec-
trophysiology. The model describes a ventricular cell
including effects on ionic channels by the concentra-
tion of ATP and ACh as well as by stretching (fig.
1). A description of the diadic space is incorporated.
Different variants and configurations of the model
exist. The following description is based on [13] [10]
[14].

Hereby, the transmembrane currents are described
by:

Im = INa + INa,b + INa,p

+Ig1 + Igr + Ixs + I arp + Ik, aCh

+ICa,b + ICa,L,K + ICa,L,Na + ICa,L,Ca
+ICa,L,K,ds + ICa,L,Na,ds + ICa,L,Ca,ds

+INaK + INaCa + INaCa,ds

+1, stretch

with the fast sodium current Iy,, the background
sodium current Ingp, the voltage dependent sodi-
um current Ing . the time-independent potassium
current Ix1, the time-dependent, delayed potassium
currents Ig, and Ik, the sodium dependent po-
tassium current Ix no, the ATP-dependent potas-
sium current Ix arp, the ACh-dependent potassi-
um current Ix ach, the background calcium current
Icap, the currents through L-type calcium channels
Icq,1,x, the L-type calcium current into the diadic
space Icq,r1,Ca,ds, the Na-K exchanger current Inq.x,
the Na-Ca exchanger current Iy,cq, the Na-Ca ex-
changer current for diadic space Inaca,ds; and the
stretch activated currents Igretch-

In this work the stretch activated current was
reparameterized by fitting data measured in single
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Fig. 2. Transmembrane voltage dependent on length of sar-
comere calculated with Noble-Varghese-Kohl-Noble mo-
del. The cell is excited by applying a stimulus current at
t = 25 ms with a length of 3 ms. The sarcomere length
ranges from 2.0 to 2.2 ym. The default length of the sar-
comere is 2 pm. The stimulus frequency was set to 1 Hz.

guinea-pig ventricular myocytes [1] with methods si-
milar to those presented in [8]. The parameters are
a=1,08=14, SLy = 2.4 um, gne—str = 15 nS,
9K —str = 30 ’I’lS, 9Ca—str = 0.1 ’I’LS, JAn—str = 15 ’I’LS,
and Fan_gr = —20 mV.

IV. SIMULATIONS

The electrophysiological model is described by a
set of ordinary differential equations. The integrati-
on of these equations was performed using the Euler
method [15] with a time step of 20 us.

For all simulations in this work the initial values
of the model variables, e. g. the transmembrane vol-
tage Vi, the ion concentrations, and the activation
and inactivation parameters, were set to those, which
result from a stationary stimulus frequency of 1 Hz.

Two sets of simulations were performed to exami-
ne the influence of static and dynamic stretch. The
influence of static stretch of different strength was
tested by initiation of excitation via injection of a
convenient current with a duration of 3 ms. The phe-
nomena of dynamic stretch were examined with diffe-
rent stretch impulses and durations. The application
of stretch starts in the diastolic phase. In both sets
of simulations the calculated model variables were
stored and processed.

V. RESULTS

The influence of static stretch on the course of the
transmembrane voltage is illustrated in fig. 2. Here-
by, the stretch amplitude is specified by the length
of the sarcomere with a default of 2 ym. The resting
potential as well as the course of the action potential
are dependent on the length of the sarcomere ranging
from 2.0 to 2.2 um. The resting potential increases
and the duration of the action potential decreases



with larger sarcomere length. Both effects can be at-
tributed to the raise of the sarcolemmal conductan-
ces. The maxima of the transmembrane voltage are
independent of stretch.

The influence of mechanical stretch impulses is de-
picted in fig. 3 and 4. In the presented simulations
the stretch amplitude and duration were varied. On-
ce again, the stretch amplitude was specified by the
length of the sarcomere with a default of 2 um. De-
pending on the amplitudes and length an effect ran-
ging from a small change of the resting potential to
an excitation of the cell was achieved.

The simulation presented in fig. 3 (a) shows the
initiation of an action impulse by a relatively small
stretch duration only for large sarcomere length or
stretch amplitude. The simulations with sarcomere
length 2.5 pwm show an increase in the duration of
the action impulse with the exception of the results
with a relatively long stretch duration depicted in
fig. 4 (b) and (c).

The initiation of an early afterdepolarisations
(EAD) is apparent in fig. 4 (a) and (b) for sarco-
mere lengths 2.4 and 2.5 ym, and for length 2.4 ym,
resp.. The classification of the EADs was performed
using the description of [16] by examination of the
activation and inactivation gates of the L-type calci-
um channels during the plateau phase.

VI. DISCUSSION AND CONCLUSIONS

The presented simulations with the electrophy-
siological cell model deliver information of the me-
chanisms of cellular mechano-electric feedback by
stretch activated ion channels. Therefore, a model
of stretch activated ion channels was parameterized
based on measurements.

The effects resulting from static stretch can be at-
tributed directly to the change of the conductivity
of the sarcolemma. While the increase of the resting
potential seems to be a common phenomenon of su-
stained stretch, the stated decrease of the duration
of the action potential is controversial [9]. Never-
theless, crossover effects delivering an increasing du-
ration by increasing stretch can be found with the
presented model for larger sarcomere lengths, i. e.
SL > 2.35 um.

The phenomena visible in simulations with dyna-
mic stretch were multifaceted. Depending on the du-
ration and amplitude of stretch different mechanisms
can be assigned, e. g. the sarcolemmal conductivity
is changed in different phases of the action potential.

The observation of EADs in the simulations is
to our knowledge not confirmed by measurements.
Nevertheless, the observation deserves further atten-
tion, because EADs are regarded as arrhythmogenic
single cell phenomena.
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Fig. 3. Initiation of action impulse by stretch simulated with
Noble-Varghese-Kohl-Noble model. At ¢ = 25 ms a me-
chanical stretch of (a) 5 ms, (b) 10 ms, and (c) 20 ms
was performed delivering a sarcomere length from 2.3 to
2.5 pm. The default length of the sarcomere is 2 pum.
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4. Initiation of action impulse by stretch simulated with
Noble-Varghese-Kohl-Noble model. At ¢ = 25 ms a me-
chanical stretch of (a) 50 ms, (b) 100 ms, and (c) 200 ms
was performed delivering a sarcomere length from 2.3 to
2.5 uym. The default length of the sarcomere is 2 pum.
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